Classification of Boar Sperm Head Images using Learning Vector Quantization

نویسندگان

  • Michael Biehl
  • Piter Pasma
  • Marten Pijl
  • Lidia Sánchez
  • Nicolai Petkov
چکیده

We apply Learning Vector Quantization (LVQ) in automated boar semen quality assessment. The classification of single boar sperm heads into healthy (normal) and non-normal ones is based on grey-scale microscopic images only. Sample data was classified by veterinary experts and is used for training a system with a number of prototypes for each class. We apply as training schemes Kohonen’s LVQ1 and the variants Generalized LVQ (GLVQ) and Generalized Relevance LVQ (GRLVQ). We compare their performance and study the influence of the employed metric.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic classification of the acrosome status of boar spermatozoa using digital image processing and LVQ

We consider images of boar spermatozoa obtained with an optical phase-contrast microscope. Our goal is to automatically classify single sperm cells as acrosome-intact (class 1) or acrosome-damaged (class 2). Such classification is important for the estimation of the fertilization potential of a sperm sample for artificial insemination. We segment the sperm heads and compute a feature vector for...

متن کامل

LVQ acrosome integrity assessment of boar sperm cells

We consider images of boar spermatozoa obtained with an optical phase-contrast microscope. Our goal is to automatically classify single sperm cells as acrosome-intact (class 1) or acrosome-reacted (class 2). Such classification is important for the estimation of the fertilization potential of a sperm sample for artificial insemination. We segment the sperm heads and compute a feature vector for...

متن کامل

Assessment of acrosome state in boar spermatozoa heads using n-contours descriptor and RLVQ

This paper proposes a method for assessing the acrosome state of boar spermatozoa heads using digital image processing. We use gray level images in which spermatozoa have been labeled as acrosome-intact or acrosome damaged using the information of a coupled fluorescent image. The heads are segmented obtaining the outer head contour. A set of "n" inner contours separated by a logarithmic distanc...

متن کامل

Statistical approach to boar semen evaluation using intracellular intensity distribution of head images.

We propose a method for the classification of boar sperm heads based on their intracellular intensity distributions observed in microscopic images. The image pre-processing comprises segmentation of cell heads and normalization for brightness, contrast and size. Next, we define a model distribution of head intracellular intensity of an alive cell using a set of head images assumed to be alive b...

متن کامل

09 BR TSAKMAKIDIS.indd

The aim of this study was to investigate the eff ect of boar age on quality traits and fertility of liquid-stored semen. Boars were allocated into 3 age groups: 7-10 months (young), 18-33 months (mature), 51-61 months (old). Ejaculates of ≥ 200x106 sperm/ml and 85% total motile sperm were extended to 30x106 sperm/ml, stored at 17-18 °C and used within 12-24 h for artifi cial insemination (AI) o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006